Crack propagation by differential insolation on desert surface clasts
نویسندگان
چکیده
In the southwest U.S., cracks in alluvial fan surface clasts have a preferred orientation independent of rock fabric and shape. In this paper, we show that differential insolation of incipient cracks of random orientations predicts a distribution of crack orientations consistent with field observations. In this model, crack growth by hydration and/ or thermal weathering is primarily a function of local water content at the crack tip. Crack tips that experience minimal solar insolation maintain a greater average moisture and, hence, weather more rapidly than cracks that experience greater solar insolation. To show this, we used a numerical radiative transfer code to quantify the solar insolation of rectangular cracks at 35° N. latitude with a range of depths and orientations. The amount of solar energy reaching the bottom of each crack was calculated at 5-min intervals over the day for several days of the year to determine hourly, daily, seasonal, and annual energy deposition as a function of crack depth and orientation. By assuming that only crack orientations that effectively shield their interiors and minimize their water loss are able to grow, the pattern of cracks produced by the model is consistent with field observations. The annual average insolation, which controls water retention, is associated with the two primary modes of crack orientation. The effect of daily recharge by summer rains of the North American monsoon system is consistent with the observed deviations from these primary modes. Model results suggest that both the annual average insolation and the daily pattern of rainfall is recorded in the preferred crack orientations of surface clasts in the southwest U. The breakdown mechanism of surface clasts in arid environments has been a topic of debate for almost a century. A central question in this debate is whether thermal stresses or hydration weathering is the dominant processes of clast breakdown (Mabbutt, 1977). Recently, McFadden et al. (2005) documented a preferred N–S orientation in the cracks of surface clasts in deserts of the southwest U.S. with the effects of rock fabric and shape removed (Fig. 1). Because surface clasts are deposited randomly, this preferred orientation develops after clast deposi-tion. McFadden et al. (2005) argued that this pattern provides direct evidence for the predominant role of thermally induced mechanical stresses resulting from differential heating of clasts as the sun moves across the sky during the course of a day. Other breakdown mechanisms can also be influenced, however, …
منابع مشابه
Cold and dry processes in the Martian Arctic: Geomorphic observations at the Phoenix landing site and comparisons with terrestrial cold desert landforms
[1] We analyze Surface Stereo Imager observations of rocks, sediments, and permafrost-related landforms in the vicinity of the Phoenix lander, comparing the imaged features to analogous examples of physical weathering and periglacial processes observed in the Antarctic Dry Valleys. Observations at the Phoenix landing site of pitted rocks, ‘‘puzzle rocks’’ undergoing in-situ breakdown, perched c...
متن کاملPredicting Depth and Path of Subsurface Crack Propagation at Gear Tooth Flank under Cyclic Contact Loading
In this paper, a two-dimensional computational model is proposed for predicting the initiation position and propagation path of subsurface crack of spur gear tooth flank. In order to simulate the contact of teeth, an equivalent model of two contacting cylinders is used. The problem is assumed to be under linear elastic fracture mechanic conditions and finite element method is used for numerical...
متن کاملPropagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor
Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...
متن کاملEstimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...
متن کاملA Review of Peridynamics and its Applications; Part1: The Models based on Peridynamics
Peridynamics is a nonlocal version of the continuum mechanics, in which partial differential equations are replaced by integro-differential ones. Due to not using spatial derivatives of the field variables, it can be applied to problems with discontinuities. In the primary studies, peridynamics has been used to simulate crack propagation in brittle materials. With proving the capabilities of pe...
متن کامل